Exercise 26

Solve the differential equation using the method of variation of parameters.

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\sin \left(e^{x}\right)
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}+3 y_{c}^{\prime}+2 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}+3\left(r e^{r x}\right)+2\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+3 r+2=0
$$

Solve for r.

$$
\begin{gathered}
(r+2)(r+1)=0 \\
r=\{-2,-1\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-2 x}$ and e^{-x}. By the principle of superposition, then,

$$
y_{c}(x)=C_{1} e^{-2 x}+C_{2} e^{-x} .
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}+3 y_{p}^{\prime}+2 y_{p}=\sin \left(e^{x}\right) \tag{2}
\end{equation*}
$$

In order to obtain a particular solution, use the method of variation of parameters: Allow the parameters in the complementary solution to vary.

$$
y_{p}=C_{1}(x) e^{-2 x}+C_{2}(x) e^{-x}
$$

Differentiate it with respect to x.

$$
y_{p}^{\prime}=C_{1}^{\prime}(x) e^{-2 x}+C_{2}^{\prime}(x) e^{-x}-2 C_{1}(x) e^{-2 x}-C_{2}(x) e^{-x}
$$

If we set

$$
\begin{equation*}
C_{1}^{\prime}(x) e^{-2 x}+C_{2}^{\prime}(x) e^{-x}=0, \tag{3}
\end{equation*}
$$

then

$$
y_{p}^{\prime}=-2 C_{1}(x) e^{-2 x}-C_{2}(x) e^{-x} .
$$

Differentiate it with respect to x once more.

$$
y_{p}^{\prime \prime}=-2 C_{1}^{\prime}(x) e^{-2 x}-C_{2}^{\prime}(x) e^{-x}+4 C_{1}(x) e^{-2 x}+C_{2}(x) e^{-x}
$$

Substitute these formulas into equation (2).

$$
\begin{aligned}
{\left[-2 C_{1}^{\prime}(x) e^{-2 x}-C_{2}^{\prime}(x) e^{-x}+\underline{4 C_{1}(x) e^{-2 x}}+C_{2}(x) e^{-x}\right]+3[} & \left.-2 C_{1}(x) e^{-2 x}-C_{2}(x) e^{-x}\right] \\
& +2\left[C_{1}(x) e^{-2 x}+C_{2}(x) e^{-x}\right]=\sin \left(e^{x}\right)
\end{aligned}
$$

Simplify the result.

$$
\begin{equation*}
-2 C_{1}^{\prime}(x) e^{-2 x}-C_{2}^{\prime}(x) e^{-x}=\sin \left(e^{x}\right) \tag{4}
\end{equation*}
$$

Add the respective sides of equations (3) and (4) to eliminate $C_{2}^{\prime}(x)$.

$$
-C_{1}^{\prime}(x) e^{-2 x}=\sin \left(e^{x}\right)
$$

Solve for $C_{1}^{\prime}(x)$.

$$
C_{1}^{\prime}(x)=-e^{2 x} \sin \left(e^{x}\right)
$$

Integrate this result to get $C_{1}(x)$, setting the integration constant to zero.

$$
\begin{aligned}
C_{1}(x) & =\int^{x} C_{1}^{\prime}(w) d w \\
& =-\int^{x} e^{2 w} \sin \left(e^{w}\right) d w \\
& =-\int^{e^{x}} u \sin u d u \\
& =-\left.(\sin u-u \cos u)\right|^{e^{x}} \\
& =\left.(u \cos u-\sin u)\right|^{e^{x}} \\
& =e^{x} \cos \left(e^{x}\right)-\sin \left(e^{x}\right)
\end{aligned}
$$

Solve equation (3) for $C_{2}^{\prime}(x)$.

$$
\begin{aligned}
C_{2}^{\prime}(x) & =-C_{1}^{\prime}(x) e^{-x} \\
& =-\left[-e^{2 x} \sin \left(e^{x}\right)\right] e^{-x} \\
& =e^{x} \sin \left(e^{x}\right)
\end{aligned}
$$

Integrate this result to get $C_{2}(x)$, setting the integration constant to zero.

$$
\begin{aligned}
C_{2}(x) & =\int^{x} C_{2}^{\prime}(w) d w \\
& =\int^{x} e^{w} \sin \left(e^{w}\right) d w \\
& =\int^{e^{x}} \sin u d u \\
& =-\left.\cos u\right|^{e^{x}} \\
& =-\cos \left(e^{x}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
y_{p} & =C_{1}(x) e^{-2 x}+C_{2}(x) e^{-x} \\
& =\left[e^{x} \cos \left(e^{x}\right)-\sin \left(e^{x}\right)\right] e^{-2 x}+\left[-\cos \left(e^{x}\right)\right] e^{-x} \\
& =-e^{-2 x} \sin \left(e^{x}\right),
\end{aligned}
$$

and the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1} e^{-2 x}+C_{2} e^{-x}-e^{-2 x} \sin \left(e^{x}\right),
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants.

